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Theoretical implications

“It has been noted that the switch from content words to function words
In authorship attribution studies has an interesting historic parallel in art-
historic research. [...] Giovanni Morelli (1816-1891) was among the first
to suggest that the attribution of, for instance, a Quattrocento painting to
some ltalian master, could not happen based on ‘content’ [...] Morelli
thought it better to restrict an authorship analysis to discrete details such
as ears, hands and feet: such fairly functional elements are naturally very
frequent in nearly all paintings, because they are to some extent content-
independent. [...] the argument is often raised that the use of these
[function] words would not be under an author’s conscious control during
the writing process.”

(Kestemont, 2014)



Theoretical Implications

“Style is a property of texts constituted by an ensemble of formal features
which can be observed quantitatively or qualitatively.”

m style[...] should be seen as a complex system, with features situated at different
linguistic levels

m Wwe conceive of stylistic features as explicitly defined and clearly identifiable.

m a certain style can be described using methods based on computing frequencies,
relations, and distributions of features and relevant statistics [quantitative], as well

as methods based on precise observation and description of individual occurrences
[qualitative]

(Herrmann et al. 2015)




Applications...
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Applications...

ON LATE
STYLE

MUSIC AND LITERATURE
AGAINST THE GRAIN

EDWARD W. SAID

“These studies . . . buzz with excitement and intelligence and demonstrate what his

admirers already knew, the extraordinary range of Said's intellectual interests.”

—Frank Kermode, London Review of Books
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A bit of mathematics...




The (many) distance measures
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The (many) distance measures
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The (many) distance measures
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How the distance

|S Ca|CU|ated and A (Evert et al.
2017)

~ JtetA [textB s ®

and 5 2 )

e 2 4 Y Burrows'’s

| Delta
In O 1
for 1 0 1

Cosine

the




Cosine Delta
Burrows's Delta
Eder's Delta
Hoover's Delta P1
Linear Delta
Eder's Simple Delta
Bray-Curtis
Canberra
Manhattan
Quadratic Delta
Eucliadean
Correlation
Cosine
Chebyshev
Rotated Delta

Cosine Delta
Burrows's Delta
Eder's Delta
Hoover's Delta P1
Linear Delta
Eder's Simple Delta
Bray-Curtis
Canberra
Manhattan
Quadratic Delta
Eucliadean
Correlation
Cosine
Chebyshev
Rotated Delta

Cosine Delta
Burrows's Delta
Eder's Delta
Hoover's Delta P1
Linear Delta
Eder's Simple Delta
Bray-Curtis
Canberra
Manhattan
Quadratic Delta
Eucliadean
Correlation
Cosine
Chebyshev
Rotated Delta

Jannidis et al.
2015

5000 Words

5000 Words

5000 Words

o
P ® o
™ e ™
P ™ ™
® ™
Y e ™
e o ™
e ] ®
® ®o o
® e [
e ® ™
Y L [ )
® ™ ™
® e ®
e ®
1000 Words 1000 Words 1000 Words
® )
™ ) ™
P ® e
P ® ™
® e e
e ® e
[ [ ) L ]
™ ® e
™ ® ™
e ] ®
P o o
o o [ J
® ™ [
e e ®
® e
100 Words 100 Words 100 Words
® ® e
® e ™
e ® Y
P ® ®
e e e
P o e
o [ J [ J
® o ™
® e e
e e e
Y o e
P e ™
P ™ ™
® o ™
® ®
| T | | | | | | | | |
1 2 3 0.2 0.4 0.6 0.8 10 20 30 40

Difference between
z-transformed means

Adjusted Rand Index

Clustering errors




Cosine Delta
Burrows's Delta
Eder's Delta
Hoover's Delta P1
Linear Delta
Eder's Simple Delta
Bray-Curtis
Canberra
Manhattan
Quadratic Delta
Eucliadean
Correlation
Cosine
Chebyshev
Rotated Delta

1000 Words

®
®
®
®
®
®
®
®
®
®
®
®
®
I I I I
0.2 0.4 0.6 0.8

Adjusted Rand Index




Delta and Cosine Delta

m They measure an
angle (or a taxi drive)
between two vectors
(representing two
texts)

m In a n-dimensional
space (representing
the most frequent
words)

m The values are not
frequencies, but z-
scores
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Caveat! Text Length

cross-validation accuracy (%)
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(Eder 2015)



Difference of z-transformed means
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Caveat(2)! How many MFW?
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Caveat(2)! How many MFW?

About 2,000
MFW produce

the best results
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Table 1

The nine feature categories Fy, Fa, ... Fg used by our method by applying each F; on a given document 2.

Havani et al. 2016

Feature category

Feature description & example

Parameters

F;: Punctuation n-grams

A sequence of n consecutive punctuation marks (commas, hyphens, etc.)
taken from % after reduction to punctuation characters.

= 3
This.is/a:sample-text — = (./:, /:i=]

ne{l,2,.. 10}

F,: Character n-grams

A sequence of n consecutive characters in 2.

.. n = 3 , . . . , .
This is a sample text —— (Thi, his, is,, s.i, Lis, i8,, BL&,...)

ne{l,2 .. 10}

F3: n% frequent tokens

The n% most frequently occurring tokens in .

n < {5, 10, ..., 50}

F4: Token k-prefixes The first k characters of a token. ke {1,2 3, 4}
n o= 2 .
This is a sample text ——— (Th, is, sa, te)
Fs: Token k-suffixes The last k characters of a token. ke {123 4}

2

1 = 2

This is a sample text —— (is, is, le, xt)

Fg: Token k-prefix n-grams

The first k characters of each token within a token n-gram.

This is a sample text

— 3
n = &

= i
¥ (This, sa_te)

#» (This is, is a, a sample, sample text)

ne {234} k< {1,23, 4)

Fs: Token k-suffix n-grams

The last k characters of each token within a token n-gram.

This is & sample text

fi ] k ]
— (This, is, is,a, a sample, sample text) — (is is, le xt)

ne {2344k = {1, 2,3, 4}

Fg: n-prefixes—k-suffixes The first n and last k characters of a token. nk = {1,234}
J = 2
This iz a sample text e, (Thyis, is, sa_le, te_xt)
Fy: n-suffixes—k-prefixes The last n characters of a token and the first k characters of the next token. nk e {1,234}

n= 34k =:

2
This is a sample text » (his ds, plete)
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The research carried out at PAN's shared tasks informs the development of new digital text forensics technology. For
reproducibility sake, the prototypes submitted for evaluation are made available by participants open source, as
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PAN at GitHub
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JGAAP -> authorship attribution with
thousends of features!
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Not only distance
measures...




Machine Learning

m Support Vector
Machines

Support
vectors
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Machine Learning <-> Distance Measures

m Instead of calculating the distances between all texts in the
COrpus...

m The corpus is divided in two parts:
training set
and test set

m The algorithms «learn» to distinguish the authors by working
on the training set

m ...and they are «tested» on the test set
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Keyness Analysis

“This established measure of corpus stylistics (cf. Hoover et
al., 2015) compares the frequencies of single words included
In some text (collection) with those obtained in a (normally
larger) reference corpus. It outputs a long list of words that
deviate statistically from that reference corpus (cf. Rayson,
2012; Scott & Tribble, 2006). Here, the reference corpus acts
as a statistical ‘norm’ against which the word use in the text(s)
under scrutiny may be compared. The examined words,
depending on whether they deviate positively or negatively, are
thus “over-" or “under-represented” with regard to that norm.”
(Herrmann 2017)
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/eta Analysis

.

3,000 words 3,000 words ...
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/eta Analysis Pick up a word:

«fou» (for example)

3,000 words 3,000 words ...

Count in how many slices of the text appears the word «fou»
Calculate the proportion

Text A: 1 (100%); text B: 0.33 (33%)

Subtract the two values

(so the word «fou» has Zeta = 0.66 for Text A)

Repeat the operation for all the words in the two texts
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Log-likelihood




Log-likelihood

m ...iS an hypotesis-based test




Log-likelihood

m ...iS an hypotesis-based test

m “[...] rather than two groups of texts characterized by
different word rates, this hypothesis claims that there is, in
fact, a single group. Words are examined one at a time;
those words for which this hypothesis seems most wrong
will be counted as distinctive” (Riddell 2015)




Log-likelihood
formula

«foun» Not
«fo u»

388592

96 445265

2@:02 Xln%z

Text a 48.06 388553
Textb  51.94 445303
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Network analysis
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Seven Bridges of Konigsberg

- “The problem was to

- devise a walk through the
- city that would cross

~ each of those bridges
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-]
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Seven Bridges of Konigsberg

“The problem was to
devise a walk through the
city that would cross
each of those bridges
once and only once.

[...]

Euler proved that the
problem has no solution.’

’

(Wikipedia)




Geo-coded networks
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Network
Analysis of
200 years
of
(German)
theater

(Fischer et al.
2016)
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Schnitzle_r, R, 1902 Wedekind, DBdP, 1902 Wedekind, KNoSidL, 1902 Schnitzler, DP, 1903
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heerbart, DW, 1904 Scheerbart, O, 1904 Schnitzler, DtC, 1961_

jedekind, DZ, 1908
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